Quiz 1 Solutions

Question 1

- (1) $A_1 = \{vvv, vvd, vdv, vdd\}$
- (2) $B_1 = \{dvv, dvd, ddv, ddd\}$
- (3) $A_2 = \{vvv, vvd, dvv, dvd\}$
- (4) $B_2 = \{vdv, vdd, ddv, ddd\}$
- $(5) A_3 = \{vvv, ddd\}$
- $(6) B_3 = \{vdv, dvd\}$
- (7) $A_4 = \{vvv, vvd, vdv, dvv, vdd, dvd, ddv\}$
- (8) $B_4 = \{ddd, ddv, dvd, vdd\}$

Recall that A_i and B_i are collectively exhaustive if $A_i \cup B_i = S$. Also, A_i and B_i are mutually exclusive if $A_i \cap B_i = \phi$. Since we have written down each pair A_i and B_i above, we can simply check for these properties.

The pair A_1 and B_1 are mutually exclusive and collectively exhaustive. The pair A_2 and B_2 are mutually exclusive and collectively exhaustive. The pair A_3 and B_3 are mutually exclusive but *not* collectively exhaustive. The pair A_4 and B_4 are not mutually exclusive since dvd belongs to A_4 and B_4 . However, A_4 and B_4 are collectively exhaustive.

Question 2

There are exactly 50 equally likely outcomes: s_{51} through s_{100} . Each of these outcomes has probability 0.02.

(1)
$$P[{s_{79}}] = 0.02$$

(2)
$$P[{s_{100}}] = 0.02$$

(3)
$$P[A] = P[\{s_{90}, \dots, s_{100}\}] = 11 \times 0.02 = 0.22$$

(4)
$$P[F] = P[\{s_{51}, \dots, s_{59}\}] = 9 \times 0.02 = 0.18$$

(5)
$$P[T \ge 80] = P[\{s_{80}, \dots, s_{100}\}] = 21 \times 0.02 = 0.42$$

(6)
$$P[T < 90] = P[\{s_{51}, s_{52}, \dots, s_{89}\}] = 39 \times 0.02 = 0.78$$

(7)
$$P[a \ C \text{ grade or better}] = P[\{s_{70}, \dots, s_{100}\}] = 31 \times 0.02 = 0.62$$

(8)
$$P[\text{student passes}] = P[\{s_{60}, \dots, s_{100}\}] = 41 \times 0.02 = 0.82$$

Question 3

We can describe this experiment by the event space consisting of the four possible events VB, VL, DB, and DL. We represent these events in the table:

In a roundabout way, the problem statement tells us how to fill in the table. In particular,

$$P[V] = 0.7 = P[VL] + P[VB]$$
 (1)

$$P[L] = 0.6 = P[VL] + P[DL]$$
 (2)

Since P[VL] = 0.35, we can conclude that P[VB] = 0.35 and that P[DL] = 0.6 - 0.35 = 0.25. This allows us to fill in two more table entries:

The remaining table entry is filled in by observing that the probabilities must sum to 1. This implies P[DB] = 0.05 and the complete table is

Finding the various probabilities is now straightforward:

- (1) P[DL] = 0.25
- (2) $P[D \cup L] = P[VL] + P[DL] + P[DB] = 0.35 + 0.25 + 0.05 = 0.65.$
- (3) P[VB] = 0.35
- (4) $P[V \cup L] = P[V] + P[L] P[VL] = 0.7 + 0.6 0.35 = 0.95$
- (5) $P[V \cup D] = P[S] = 1$
- (6) $P[LB] = P[LL^c] = 0$