Quiz 1 Solutions

Question 1

(1) $A_{1}=\{v v v, v v d, v d v, v d d\}$
(2) $B_{1}=\{d v v, d v d, d d v, d d d\}$
(3) $A_{2}=\{v v v, v v d, d v v, d v d\}$
(4) $B_{2}=\{v d v, v d d, d d v, d d d\}$
(5) $A_{3}=\{v v v, d d d\}$
(6) $B_{3}=\{v d v, d v d\}$
(7) $A_{4}=\{v v v, v v d, v d v, d v v, v d d, d v d, d d v\}$
(8) $B_{4}=\{d d d, d d v, d v d, v d d\}$

Recall that A_{i} and B_{i} are collectively exhaustive if $A_{i} \cup B_{i}=S$. Also, A_{i} and B_{i} are mutually exclusive if $A_{i} \cap B_{i}=\phi$. Since we have written down each pair A_{i} and B_{i} above, we can simply check for these properties.

The pair A_{1} and B_{1} are mutually exclusive and collectively exhaustive. The pair A_{2} and B_{2} are mutually exclusive and collectively exhaustive. The pair A_{3} and B_{3} are mutually exclusive but not collectively exhaustive. The pair A_{4} and B_{4} are not mutually exclusive since $d v d$ belongs to A_{4} and B_{4}. However, A_{4} and B_{4} are collectively exhaustive.

Question 2

There are exactly 50 equally likely outcomes: s_{51} through s_{100}. Each of these outcomes has probability 0.02 .
(1) $P\left[\left\{s_{79}\right\}\right]=0.02$
(2) $P\left[\left\{s_{100}\right\}\right]=0.02$
(3) $P[A]=P\left[\left\{s_{90}, \ldots, s_{100}\right\}\right]=11 \times 0.02=0.22$
(4) $P[F]=P\left[\left\{s_{51}, \ldots, s_{59}\right\}\right]=9 \times 0.02=0.18$
(5) $P[T \geq 80]=P\left[\left\{s_{80}, \ldots, s_{100}\right\}\right]=21 \times 0.02=0.42$
(6) $P[T<90]=P\left[\left\{s_{51}, s_{52}, \ldots, s_{89}\right\}\right]=39 \times 0.02=0.78$
(7) $P[$ a C grade or better $]=P\left[\left\{s_{70}, \ldots, s_{100}\right\}\right]=31 \times 0.02=0.62$
(8) $P[$ student passes $]=P\left[\left\{s_{60}, \ldots, s_{100}\right\}\right]=41 \times 0.02=0.82$

Question 3

We can describe this experiment by the event space consisting of the four possible events $V B, V L, D B$, and $D L$. We represent these events in the table:

	V	D
L	0.35	$?$
B	$?$	$?$

In a roundabout way, the problem statement tells us how to fill in the table. In particular,

$$
\begin{align*}
& P[V]=0.7=P[V L]+P[V B] \tag{1}\\
& P[L]=0.6=P[V L]+P[D L] \tag{2}
\end{align*}
$$

Since $P[V L]=0.35$, we can conclude that $P[V B]=0.35$ and that $P[D L]=0.6-$ $0.35=0.25$. This allows us to fill in two more table entries:

	V	D
L	0.35	0.25
B	0.35	$?$

The remaining table entry is filled in by observing that the probabilities must sum to 1 . This implies $P[D B]=0.05$ and the complete table is

	V	D
L	0.35	0.25
B	0.35	0.05

Finding the various probabilities is now straightforward:
(1) $P[D L]=0.25$
(2) $P[D \cup L]=P[V L]+P[D L]+P[D B]=0.35+0.25+0.05=0.65$.
(3) $P[V B]=0.35$
(4) $P[V \cup L]=P[V]+P[L]-P[V L]=0.7+0.6-0.35=0.95$
(5) $P[V \cup D]=P[S]=1$
(6) $P[L B]=P\left[L L^{c}\right]=0$

